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Abstract 

This article examines the common claim that the strength of a solenoid can be increased by 

removing some turns from the coil. In the process we look at formulations for inductance, power, 

energy, and force. The end result clarifies the roles of several solenoid parameters, and the effect 

of the number of turns may be surprising to many readers. Those who would prefer to skip the 

mathematical details can find a qualitative explanation in the conclusion. 

 

Introduction 

The primary motivation for this article was the desire for students in an embedded systems 

course to have an understanding of solenoids sufficient to answer questions such as these: 

 

1. You have a base solenoid design but would like to obtain more force. What parameters can 

you vary in order to do so? 

 

2. You have more force than you need from a particular solenoid. What can you do to reduce it 

and save some electrical power in the process? 

 

On the surface these would seem to be questions that should require only a rudimentary 

understanding of solenoids, but an examination of textbook literature and website coverage 

shows that to not be the case. For example, undergraduate textbooks on electromagnetism 

universally provide the following approximation to the magnetic field of a long cylindrical coil 

(Reference 1): 
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Here N/l is the density of turns, I is the current through the coil, and  is the permeability of the 

core. The analysis of the field for cylindrical coils does not go much beyond that, even in 

textbooks oriented towards engineering students. A novice is likely to look at this equation and 

conclude that one can increase the magnetic field, and thus the force of the solenoid, by adding 

turns (not subtracting them, as posed in the title of this article). A problem with that conclusion is 

that practical circuits rarely drive coils with constant current; they almost always apply constant 

voltage. 

 

As a second example, standard texts are likely to show the following formulations for the energy 

of an inductor coil (Reference 1): 
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Where L is the inductance, (2) is total energy, and (3) is energy density, which must be integrated 

over an enclosing volume to get energy. If we substitute (1) into (3) we see that both of these 

formula are again expressed in terms of current. 

 

You may be thinking: “I know Ohm’s law, so I will simply substitute V = I/R into either of these 

to get an expression in terms of voltage.”  Not so fast. These devices are inductive, and so there 

is also the reactive component of impedance to consider. This cannot be ignored even if you’re 

driving a coil with a DC waveform, because determining an inductor’s reaction to a sudden 

change of voltage requires consideration of reactance.  

 

Those familiar with basic electrical engineering may be tempted at this point to say: “No 

problem, reactance creates a phase shift between voltage and current that I don’t care about, so 

I’ll just use the magnitudes and make the following substitution: 
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where f is frequency. If we use radial frequency, =2πf, drop the magnitude symbol, and 

substitute into (2) we get: 
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This same expression can be obtained by multiplying the average reactive power in an inductor 

by one radial time period, 1/, in order to obtain the energy over one cycle: 
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In this case, we can simplify the development by normalizing, at least temporarily, to a radial 

frequency of 1 rad/sec, leading to: 
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This has a nice symmetry to (2) for those who are familiar with the power delivered to a resistor. 

This also appears to give us what we are seeking:  an expression for the energy in a coil for a 

constant voltage. Of course we assumed AC voltage to get here, but perhaps that is acceptable 

since we all know that a solenoid that works for AC can be made to work for DC. For any 



readers that are wondering how a solenoid works for AC when the B field is constantly 

reversing, all you need to realize is that the force on the armature will be in the direction that 

increases inductance. Thus, regardless of the direction of B, the armature will always be pulled 

into the coil.  

 

Unfortunately, pursuing the formulation in (8) leads to a result that does not approximate real 

solenoids. That analysis, along with an explanation of the mismatch, is given in Appendix A. 

For now, it will prove more useful to pursue an approach that does work, starting from a realistic 

equivalent circuit that includes both an ideal inductor along with a series resistance to represent 

copper losses in the coil.  

 

Equivalent Circuit 

Figure 1 shows an equivalent circuit of an ideal inductor (the coil of the solenoid), along with a 

series resistor representing the lumped resistive losses of the coil. The switch is thrown at time 

t=0, and we wish to determine I(t) and V(t) across the inductor. The product of those will give us 

power, and we will integrate the power to get energy. For purposes of answering the turns 

question, it may be sufficient to look at the energy with the armature at one or more arbitrary 

positions.  

 

The positions of armature out and armature all the way in are the easiest to analyze because the 

inductance is easy to estimate in those positions. However, it is also instructive to differentiate 

energy with respect to armature position in order to get force, and we can then compare the force 

vs. position to force-stroke curves for real solenoids. This does, in fact, provide a justification for 

rejecting a model based on (8). 

 
Figure 1: Equivalent Circuit 

 

A detailed analysis of the time-varying current and inductor voltage can be found in any electric 

circuit textbook (Reference 2) and at many sites on the web (Reference 3). The transient 

response of the inductor is required here, and may be obtained using Laplace circuit analysis or 

via a straightforward solution to a first-order differential equation. Here we just make use of the 

pertinent results, rather than cover the details. 

 

The voltage across, and current through, the inductor are: 
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Where =L/R is called the RL time constant. The waveforms are shown in Figure 2 and 

Figure 3. Note that the current builds gradually to V/R and the voltage spikes to V and then 

falls off gradually to zero. The circuit comes to within 37% of its final state in  seconds.  

 
 Figure 2: Voltage across the inductor Figure 3: Current through the inductor 

 

Multiplying voltage and current gives power:  
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Integrating the power gives the energy required to bring the inductor up to its steady-state 

current: 
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Like (8), this equation for energy gives us what we desire: an expression in terms of voltage 

instead of current. Note, however, that there are two big differences:  (a) it includes resistance, 

which better represents the real world, and (b) inductance appears in the numerator instead of the 

denominator. 
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